翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

semantic search : ウィキペディア英語版
semantic search
Semantic search seeks to improve search accuracy by understanding searcher intent and the contextual meaning of terms as they appear in the searchable dataspace, whether on the Web or within a closed system, to generate more relevant results. Semantic search systems consider various points including context of search, location, intent, variation of words, synonyms, generalized and specialized queries, concept matching and natural language queries to provide relevant search results. Major web search engines like Google and Bing incorporate some elements of semantic search.
Guha et al. distinguish two major forms of search: navigational and research. In navigational search, the user is using the search engine as a navigation tool to navigate to a particular intended document. Semantic search is not applicable to navigational searches. In research search, the user provides the search engine with a phrase which is intended to denote an object about which the user is trying to gather/research information. There is no particular document which the user knows about and is trying to get to. Rather, the user is trying to locate a number of documents which together will provide the desired information. Semantic search lends itself well with this approach that is closely related with exploratory search.
Rather than using ranking algorithms such as Google's PageRank to predict relevancy, semantic search uses semantics, or the science of meaning in language, to produce highly relevant search results. In most cases, the goal is to deliver the information queried by a user rather than have a user sort through a list of loosely related keyword results. However, Google itself has subsequently also announced its own Semantic Search project.
Author Seth Grimes lists "11 approaches that join semantics to search", and Hildebrand et al. provide an overview that lists semantic search systems and identifies other uses of semantics in the search process.
Other authors primarily regard semantic search as a set of techniques for retrieving knowledge from richly structured data sources like ontologies and XML as found on the Semantic Web. Such technologies enable the formal articulation of domain knowledge at a high level of expressiveness and could enable the user to specify their intent in more detail at query time.
==Disambiguation==
In order to understand what a user is searching for, word sense disambiguation must occur. When a term is ambiguous, meaning it can have several meanings (for example, if one considers the lemma "bark", which can be understood as "the sound of a dog," "the skin of a tree," or "a three-masted sailing ship"), the disambiguation process is started, thanks to which the most probable meaning is chosen from all those possible.
Such processes make use of other information present in a semantic analysis system and takes into account the meanings of other words present in the sentence and in the rest of the text. The determination of every meaning, in substance, influences the disambiguation of the others, until a situation of maximum plausibility and coherence is reached for the sentence. All the fundamental information for the disambiguation process, that is, all the knowledge used by the system, is represented in the form of a semantic network, organized on a conceptual basis.
In a structure of this type, every lexical concept coincides therefore with a semantic network node and is linked to others by specific semantic relationships in a hierarchical and hereditary structure. In this way, each concept is enriched with the characteristics and meaning of the nearby nodes.
Every node of the network (called Synset) groups a set of synonyms which represent the same lexical concept (called Synsets) and can contain:
*single lemmata ('seat', 'vacation'; 'work', 'quick'; 'quickly', 'more', etc.)
*compounds ('non-stop', 'abat-jour', 'policeman')
*collocations ('credit card', 'university degree', 'treasury stock', 'go forward', etc.)
The semantic relationships (links), which identify the semantic relationships between the synsets, are the order principals for the organization of the semantic network concepts.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「semantic search」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.